• Transparency
    员工体验平台的演进:推动 AI 转型的关键引擎 员工体验平台(EXP)正在成为企业 AI 转型的关键基础设施。EXP 不再只是HR工具,而是推动组织学习、透明沟通和员工赋能的核心平台。研究提出五大战略:以人为本、自下而上、持续学习、透明沟通和实时优化。案例包括 Microsoft 的 HR AI 转型、ASOS 的 AI 自动化、Clifford Chance 的法律文书 AI 起草。EXP 赋能组织实现敏捷变革和AI落地。 AI 正在快速改变职场——不仅是技术,更是组织文化与工作方式的深刻变革。 人工智能(AI)的广泛应用为生产力、效率和业务增长带来了前所未有的机遇。然而,AI 转型并不仅仅意味着“部署新技术”,它实际上深刻地重塑了员工体验,影响着组织文化、团队协作方式与工作流程。 在这一转型过程中,员工体验平台(Employee Experience Platform,简称 EXP) 正逐渐从传统的 HR 工具,演进为推动企业成功实施 AI 的关键引擎。EXP 不再只是一个用于请假或查政策的门户,而是集成沟通、学习、协作、数据与自动化的智能化平台,帮助组织推动 AI 采纳、提升员工准备度,并确保 AI 真正带来业务价值。 员工体验平台的演进 EXP 的初始功能主要是处理事务性流程,如请假申请、薪资查询等。但如今,随着 AI 技术的发展,EXP 已演变为智能化的交互中心,集成以下核心功能: 跨系统的员工沟通与协作 提供关于 AI 使用和员工情绪的实时洞察 支持个性化的学习与技能建设 自动化重复任务,让员工专注于更有价值的工作 同时,得益于 AI Agent 的融入,如今的 EXP 变得更易使用,员工可通过自然语言与系统交互,实现跨系统流程操作,无需再进入多个事务性系统。 因此,EXP 不再是“可有可无”的系统,而是 企业 AI 成功转型的关键基础设施。 企业 AI 转型案例 我们调研了三家具有代表性的公司,探讨他们在 AI 转型中如何借助 EXP 实现落地与成效: 1. ASOS(线上时尚零售) 部署 Microsoft Copilot 与 Microsoft Viva 赋能多业务部门 用 AI 驱动 HR 案例处理工具,提升服务效率 通过自助服务门户精简事务流程 用自定义 AI bot 自动完成可持续认证流程 成果:员工生产力提升、参与度增强、AI 无缝落地 2. Microsoft(打造 AI 驱动的 HR 部门) 通过 Viva 学习模块开展 AI 培训 自助 HR 工具增强员工支持体验 实时分析 AI 使用情况,持续优化策略 成果:HR 效率显著提升,数千名 HR 领导参与 AI 社群 3. Clifford Chance(国际律所) 用 AI 起草法律文件,为律师提供初稿 借助 AI 语言工具跨越法律语境差异 利用 AI 管理法律知识,快速找出相关案例 成果:文书效率提升、知识共享加速、决策更精准 AI 转型的敏捷性要求 与传统变革不同,AI 推广不是一次性事件,而是一个 持续试验、迭代和适应的过程。因此,企业需具备“变革敏捷性”(Change Agility),用灵活的机制推动员工学习和组织协同。 借助 EXP 实现 AI 成功的五大战略 我们总结出五个成功企业在 AI 转型过程中普遍遵循的策略,而 EXP 是支撑这些策略实施的核心平台: 1. 以人为本与目标导向(Focus on People and Purpose) AI 的导入需与组织使命、价值观和员工需求保持一致。EXP 可确保所有 AI 工具围绕员工体验设计,提升参与度、工作效率和福祉。 📌 案例:Microsoft HR 借助 Viva Amplify 定制 AI 推广内容,让 HR 团队及时获取战略沟通信息,确保 AI 项目与业务目标保持一致。 2. 采用自下而上的迭代方法(Bottom-Up, Iterative Approach) AI 转型不能靠高层指令推动,而应依赖一线员工的反馈与试验。EXP 通过实时反馈与学习机制,让员工在实际工作中试用、迭代与优化 AI 工具。 📌 案例:ASOS 借助 Viva 社区功能发起“Work Smarter”活动,员工可在平台上公开交流 AI 使用案例,形成知识共享文化。 3. 鼓励透明沟通与试验精神(Transparent Communication and Experimentation) 员工需要明确知道 AI 工具的使用场景、目的与风险,才能建立信任并积极参与。EXP 提供结构化、公开的试验机制,确保过程透明。 📌 案例:Clifford Chance 在 Microsoft Viva 中嵌入 AI 工作流程,员工可以实时测试 AI 辅助起草功能,同时了解其运行逻辑。 4. 推动持续学习与技能建设(Continuous Learning and Skill-Building) 员工必须掌握 AI 基本素养,才能有效融入 AI 工具。EXP 提供基于角色定制的学习路径,支持技能升级与长期成长。 📌 案例:Clifford Chance 借助 Viva Learning 培训员工 prompt 工程、AI 素养与数据分析技能,为 AI 工具的使用打下基础。 5. 实现实时度量与持续优化(Real-Time Measurement and Improvement) 与传统 IT 项目不同,AI 推广必须持续监测并快速调整策略。EXP 提供实时分析能力,帮助企业追踪员工情绪、生产力与 AI 使用情况。 📌 案例:Microsoft HR 借助 Viva Insights 实时追踪 AI 使用频率、员工负荷减轻情况与情绪变化,以便动态调整 AI 战略。 HR 在 AI 转型中的新角色 在 AI 重构工作的过程中,HR 部门不再只是支持者,而是: 主导员工技能升级与再培训 协助重塑岗位定义与工作流程 在 HR、IT 与业务之间架起 AI 战略桥梁 落实负责任 AI 政策,确保 AI 应用符合伦理与企业文化 HR 将在未来的 AI 时代中扮演 “战略引导者 + 管理变革催化者” 的核心角色。 行动建议与未来展望 企业若想在 AI 转型中取得成功,应当: ✅ 采用“变革敏捷”思维,持续学习、实时迭代 ✅ 建立 AI 驱动的员工体验平台,支持流程与文化融合 ✅ 打破 HR、IT、业务之间的壁垒,实现跨部门协同 ✅ 实施实时度量机制,根据反馈不断优化 AI 战略 EXP 已成为企业迈入 AI 未来的基础设施。 AI 将持续重塑职场,但决定 AI 成败的关键并非技术本身,而是组织是否能让员工真正拥抱 AI、用好 AI。 EXP 不再只是一个 HR 工具,而是打造学习型组织、推动信任建设和灵活变革的“中枢神经系统”。企业若想在 AI 驱动的时代中保持竞争力,就必须把员工体验放在战略核心位置。 作者:Kathi Enderes | 全球研究与行业分析高级副总裁 | Josh Bersin Company
    Transparency
    2025年07月20日
  • Transparency
    HRTech观点:AI招聘透明化挑战—候选人对AI黑洞的担忧引发的问题 AI招聘正在加速变革,但候选人的信任感仍需加强!最新调查显示,67%求职者对AI简历筛选感到不安,90%希望企业披露AI招聘的使用方式。面对人才市场竞争加剧,企业如何在提高招聘效率的同时保障公平性?部分AI招聘工具已推出透明AI功能,让求职者看到简历匹配度及改进建议,增强信任。与此同时,纽约市、欧盟等地区已立法规范AI招聘,要求提高透明度和公平性。 HRTech倡导负责任的AI(RAIHR),提出六大核心原则:透明性、公平性、隐私性、安全性、道德性、持续性。企业需主动披露AI招聘流程,AI厂商应优化算法,求职者也可优化简历适应AI趋势。AI招聘透明化不仅影响候选人体验,也关乎企业品牌和法律合规。让我们共同推动负责任AI,打造更公平、透明的职场未来! 这两年,人工智能(AI)招聘技术在全球范围内迅速发展,越来越多的企业依赖AI进行简历筛选、人才评估和招聘决策。AI的应用确实提升了招聘效率,但与此同时,它也引发了候选人对公平性、透明度和隐形歧视的担忧。ServiceNow的最新调查显示,67%的求职者对AI筛选简历感到不安,90%的人希望企业能清晰披露AI在招聘中的应用方式。面对人才市场竞争日益激烈的现状,企业如何平衡AI技术的高效性与候选人的信任感? HRTech与几位应聘的候选人交流,普遍谈到在招聘过程中人工智能参与的透明度问题,简历投递后进入了一个黑洞,从筛选简历、通知面试,视频面试,是否通过面试等都是在跟AI打交道,感到非常困惑,不知道该怎么办?这就引发了我们今天要讨论的话题:负责任的AI! AI招聘带来的多重挑战:求职者的不安、企业的困境与厂商的责任 1. 候选人对AI招聘的不安来源 从求职者的角度来看,AI招聘系统更像是一个“黑盒”: 决策不透明:候选人无法得知自己被淘汰的原因,简历筛选的标准也未公开。 算法偏见:AI招聘系统通常基于历史数据进行训练,但这些数据可能包含无意识的性别、年龄、种族等偏见,导致潜在的招聘歧视。 缺乏人性化考量:AI难以理解求职者的软技能、潜力和非线性职业发展轨迹,这对非传统背景的候选人尤其不利。 尤其是对于初级岗位求职者,他们往往依赖简历投递,而不像高级职位候选人那样能通过社交网络或内推绕开AI筛选。因此,AI筛选的不透明性加剧了他们的求职焦虑,甚至可能让他们因担忧而放弃申请某些企业。 2. AI招聘厂商的责任与挑战 AI招聘工具的开发者和供应商不仅是推动招聘数字化的主力军,同时也是解决招聘透明度问题的关键环节。这些厂商面临的挑战主要包括: 提高AI模型的可解释性:AI招聘系统必须提供更透明的筛选标准和评估逻辑,而不仅仅是输出一个通过或淘汰的结果。求职者和HR都需要理解AI如何做出决定。 避免算法偏见:AI模型的训练数据往往基于历史招聘案例,但如果数据本身存在性别、种族或教育背景等偏见,AI可能会放大这种歧视。因此,厂商需要投入更多资源进行公平性审计和算法优化,确保招聘AI的公正性。 增强企业客户的信任:企业在采购AI招聘工具时,越来越关注合规性和透明度。招聘厂商若能提供可解释的AI功能,如“筛选理由可视化”或“人工复核机制”,将更受市场青睐。 确保法律合规:全球多个地区(如欧盟、美国纽约市)已经出台相关法规,要求AI招聘产品符合透明度和公平性标准。厂商需要不断调整产品策略,以符合最新法规要求。 部分AI招聘公司已经开始推出“透明AI”功能,例如让候选人能够查询自己的简历评分、匹配度及改进建议。这种趋势将成为未来AI招聘产品竞争的核心要素。 3. 企业在AI招聘中的现实困境 尽管AI在提高招聘效率方面展现了巨大潜力,但如果透明度问题得不到解决,企业可能面临人才流失、品牌损害以及法律风险: 损失高质量候选人:如果求职者对AI招聘系统不信任,他们可能直接跳过某些企业的职位申请,导致企业错失潜在优秀人才。 影响雇主品牌:招聘流程是企业形象的重要组成部分,如果候选人对AI招聘产生负面体验,他们可能会在社交媒体或求职平台上分享自己的不满,从而影响企业的市场声誉。 合规风险上升:全球范围内,越来越多的法规正在限制AI招聘的黑箱操作。例如,美国纽约市已推出法案,要求AI招聘系统必须进行审计,以确保公平性和透明度。 如何推进AI招聘透明化?HRTech各方的建议 要实现AI招聘透明化,必须从企业、AI招聘工具提供商和候选人等多方共同推动。 1. 企业:主动披露AI招聘使用方式,提升信任感 企业需要意识到,招聘流程的透明度直接影响到人才吸引力。因此,企业应主动披露AI在招聘流程中的作用,包括: 在哪些环节使用AI(如简历筛选、面试安排、候选人匹配); AI的主要评估标准(如关键词匹配、技能要求、经验年限等); 是否有人类HR复核AI筛选的结果,确保最终决策不会完全由算法决定。 2. AI招聘工具提供商:增强透明度,提高市场竞争力 AI招聘工具的供应商同样需要顺应市场需求,将透明化作为产品的核心竞争力。具体措施包括: 提供“可解释的AI”功能,允许企业查看AI的决策逻辑,并根据需要调整筛选标准。 让候选人获取筛选反馈,例如“您的简历匹配度为85%,主要匹配项是A、B、C,建议补充D、E、F”。 支持人工与AI结合的招聘模式,例如保证一定比例的申请者由HR人工筛选,而不是完全依赖算法。 3. 候选人:主动适应并推动透明化变革 面对AI招聘的不透明性,候选人可以: 优化简历,提升AI适配度; 利用社交网络绕开AI系统; 积极反馈,推动行业透明化变革。 AI招聘透明化不仅是技术进步的标志,更是企业吸引人才和实现长期发展战略的必由之路。唯有企业、供应商和候选人共同努力,才能真正实现公平透明的招聘环境。 在此,我们倡议所有HR从业者积极加入并实践“负责任AI在人力资源(RAIHR)”的行动,共同推进AI招聘的透明性、公平性、安全性与道德性,明确公开AI决策的依据,建立完善的候选人反馈机制,并推动AI技术真正服务于人才与组织的共同发展。让我们携手共进,共同打造更透明、更公平、更负责任的职场未来。 RAIHR的实施,不仅能够强化企业的雇主品牌,吸引更多高质量的人才,还能帮助AI招聘工具提供商在激烈的市场竞争中脱颖而出,赢得客户的信赖与认可。同时,对于候选人而言,这一倡议的落实意味着更公平的职业机会和更透明的职场环境。我们相信,只有实现负责任的AI实践,才能确保技术进步真正服务于人的发展,构建企业、厂商与候选人多方共赢的未来。   RAIHR倡议提出六大实践原则: 透明性(Transparency):清晰地公开AI在HR决策过程中的使用方式与评估标准,让候选人和员工清楚AI如何影响他们。 公平性(Fairness):通过消除算法偏见,确保AI应用不会对任何特定群体造成歧视或不公平对待。 隐私性(Privacy):全面遵守隐私保护法规,严格保护员工及候选人的数据隐私。 安全性(Security):保障AI系统的安全性,避免信息泄漏或滥用,确保数据的完整性与安全性。 道德性(Ethicality):以人为本,确保AI的使用增强而非削弱员工的职场福祉与体验。 持续性(Sustainability):关注AI技术的长期影响,确保其应用与企业长期战略和员工发展目标保持一致。
    Transparency
    2025年03月10日